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Abstract

Automatic QT interval measurements during Thorough
QT studies (TQT) are usually overread by experts and ad-
justed if necessary. Our study aimed to provide a QT Inter-
val Inaccuracy index to automatically identify inaccurate
automated QT interval estimations.

12-lead ECG recordings and their manual interval mea-
surements were obtained from 2 TQT study databases in
PhysioNet (ECGDMMLD and ECGRDVQ). We derived
268 single-lead features that might relate to the accu-
racy of automatic QT intervals computed by convolutional
neural network (CNN) based QT estimators previously
trained on our own ECG database. Classification of accu-
rate and inaccurate automatic QT intervals was performed
with a regularized logistic regression algorithm trained on
ECGDMMLD. The QTI was then defined for each ECG
recording as the average probability of the QT being inac-
curate across the 12 leads.

41% inaccurate automatic QT intervals were identified
in ECGRDVQ (QTI threshold = 0.5). Better estimates of
the drug-induced QTc changes were obtained by correct-
ing these QT intervals. The QTc prolongation obtained
with this semi-automated method differed from the manual
one by on average 2.98 ms (std = 1.82 ms) across the 4
drugs studied. The QTI would therefore allow a faster and
more robust analysis of ECG signals from TQT studies.

1. Introduction
Heart-rate corrected QT (QTc) prolongation is the pri-

mary biomarker for assessing the risk of drug-induced tor-
sades de pointes during Thorough QT (TQT) studies. Ten
of thousands of ECG signals are analyzed during such
studies, usually with a semi-automated method where ev-
ery computer-based QT measurement is overread by ECG
experts and manually adjusted if necessary. Fully auto-
mated methods are indeed not yet recommended due to
reliability concerns especially when analyzing noisy or ab-
normal ECG signals including drug-induced T-wave mor-

phology changes, low amplitude P or T waves and over-
lapping U waves.

The workload and cost of TQT studies could be signif-
icantly lowered if experts were only required to overread
signals where automated QT interval measurement is chal-
lenging. Signal quality indices were proposed to automat-
ically detect low-quality ECG signals that need expert re-
view. The quality indices were derived from ECG mor-
phology features or outlier interval measurements [1, 2].
This approach works on the assumption that the automated
algorithm chosen for QT measurement is reliable on clean
ECG signals, but this still requires extensive validation on
drug-induced ECG abnormalities.

In this work, we propose an algorithm-centered ap-
proach that estimates the level of inaccuracy of automated
QT measurements, denoted as the QT Inaccuracy Index
(QTI). The QTI relies on recently suggested convolutional
neural networks (CNN) based QT estimators [3]. Similarly
to what has been proposed for the estimation of ECG qual-
ity by comparing two automated QRS detectors [4], we
suggest classifying QT measurements as accurate or inac-
curate by comparing the outputs of three CNN-based mod-
els, in addition to analyzing CNN-derived ECG morphol-
ogy features. This method aims at automatically selecting
the ECG signals with less accurate QT measurements to be
reviewed by experts.

2. Method
2.1. Data

Two publicly available databases, published on Phy-
sioNet [5], were used in this study: (i) ECGDMMLD
database [6] was used for training and validation purposes;
(ii) while the ECGRDVQ database [7] was used as an ex-
ternal test database. Both databases consisted in prospec-
tive randomized placebo-controlled clinical trials testing
the cardiotoxicity of four different drugs. They include 12-
lead ECG signals and expert-validated QT measurements
over several timepoints. A summary of both databases is
given in Table 1.
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Table 1. Description of the databases.

Train Validation Test
ECGDMMLD ECGDMMLD ECGRDVQ

Nbr Subjects 17 5 22
Nbr Leads1 38,112 12,420 62,784
1 Nbr Leads: 12xNbr of ECG recordings

2.2. Automatic QT measurements
In a previous study [3], we trained three CNN-based

QT estimators: (1) a U-Net model, (2) a residual neural
network (KanResWide) adapted from Hicks et al. [8] and
(3) a basic CNN with attention mechanism (AttnCNN).
These models take as input a single-lead ECG heartbeat
(cf. Figure 1.A). The QT output space was discretized in
2 ms sub-intervals or classes and the models first predict
the QT interval class before computing the QT interval
as the mid-point of the predicted sub-interval. The mod-
els also output the probability of belonging to that sub-
interval, which can be interpreted as their inherent confi-
dence level. In order to compute the automatic QT inter-
vals for the ECGDMMLD and ECGRDVQ databases with
these models, we first computed average beats for each of
the 12 leads in the ECG recordings.

We will denote QTi,j , i ∈ {1, 2, 3} , j ∈ {1, .., 5} the QT
measured by Model 1 (U-Net), Model 2 (KanResWide) or
Model 3 (AttnCNN) yielded by the jth fold of our 5-fold
cross-validation experiment and CLi,j the corresponding
confidence level. The automatic QT against which is com-
pared the manual QT is QTautomatic = QTU−Net =
1
5

∑5
j=1 QT1,j . U-Net was chosen because it localizes

both the QRS onset and the T offset while KanResWide
and AttnCNN only output a QT interval estimate.
2.3. QT Interval Inaccuracy labeling

We want to identify less accurate QT measurements re-
quiring manual review by an expert. To this aim, we la-
beled the available data with binary labels: 1 if the abso-
lute difference between the actual QT interval and the auto-
matic QT interval (U-Net) is above 15 ms and 0 otherwise
(1: inaccurate QT, 0: accurate). The 15 ms QT threshold
was chosen as a reasonable middle ground of the reported
limits of agreement (5-25 ms) between several ECG read-
ers for expert adjudication [7, 9].
2.4. Feature engineering

In order to build the QTI, a total of 268 features were
derived from the outputs of the 15 (3x5) CNN-based QT
estimators. These features consist in the following:

(i) U-Net confidence levels: CL1,1−5 sorted in the as-
cending order.

(ii) U-Net extracted ECG features: The U-Net model
computes 256 global features, which give a compact rep-
resentation of the ECG template. In this work, we used the
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Figure 1. A, Single-lead automatic QT measurement with
CNN-based models. B, The QTI for a given 12-lead ECG
recording is defined as the mean probability that the auto-
matic single-lead QT interval is inaccurate.

features computed by the model from the 1st fold.
(iii) QT variability metrics: 7 variability metrics were

computed from the automated QT intervals and defined as
follows:
- the global QT standard deviation (SD)

σg = SDi,j(QTi,j , i ∈ {1, 2, 3}, j ∈ {1, .., 5})

- the QT standard deviation for each model across folds

σi = SDj(QTi,j , j ∈ {1, .., 5}), i ∈ {1, 2, 3}

- the mean dissensus (disagreement between models)

d =
1

15

3∑
i=1

5∑
j=1

(QTi,j −meanQT )2

maxQT −minQT

with meanQT, maxQT and minQT the mean, maximum
and minimum of all QTi,j , i ∈ {1, 2, 3}, j ∈ {1, .., 5}.
- the mean absolute difference between the QT intervals
estimated by U-Net and KanResWide

ϵ1,2 =
1

5

5∑
j=1

|QT1,j −QT2,j |

- the mean absolute difference between the QT intervals
estimated by AttnCNN and KanResWide

ϵ3,2 =
1

5

5∑
j=1

|QT3,j −QT2,j |

2.5. Model building
LASSO Logistic Regression: We implemented a pe-

nalized logistic regression classifier with LASSO (L1 reg-
ularization), which allows to only keep the most rele-
vant features amongst the 268 and avoid overfitting the
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model. The model was trained with Python’s Scikit-learn
library. The weights associated with each label were ad-
justed following their distribution in the training set (bal-
anced mode).

QTI definition: As illustrated on Figure 1.B, in order
to have a single prediction for each 12-lead ECG record-
ing, the probabilities outputted by the logistic regression
algorithm for each lead were averaged to give the QTI.

Classification metrics: The F2 score was chosen as the
main metric for this task.

F2 =
1 + β2

β2

Recall +
1

Precision

, β = 2

Indeed, we aimed to reduce the number of false negatives
FN , i.e. the number of inaccurate QT measurements not
reviewed by an expert, and therefore maximize the recall
TP /(TP + FN ) hence why it has stronger weight than the
precision TP /(TP + FP ).

LASSO parameter tuning and QTI calibration: The
automatic QT measurements were classified based on a
QTI threshold that we optimized along with the LASSO
regularization strength ( 1λ ) by conducting a grid-search on
the validation set. The parameters yielding the highest F2

score were retained.
2.6. Evaluation of semi-automated TQT

study
For the ECGRDVQ database, the automatic QT inter-

vals with a QTI above threshold were replaced by the man-
ual QT intervals. The placebo-corrected QTc changes es-
timated with this proposed semi-automated method were
then compared to the manual and fully automated meth-
ods.

3. Results
3.1. Classification

The highest F2 score was obtained on the validation set
with a QTI threshold of 0.4 and λ = 0.01. In Table 2,
we reported the scores (F2, recall and precision) obtained
with these optimal parameters on both the validation and
test sets. As the QTI threshold increases, the precision
improves on the validation set while the recall decreases.
LASSO selected the 21 most relevant features: 20 U-Net
extracted ECG features and the highest U-Net CL.

3.2. Analysis of the TQT studies
Table 3 reports the percentage of inaccurate QT mea-

surements computed with the predicted labels at dif-
ferent QTI thresholds and with the true labels (ground
truth) for each drug in the ECGRDVQ database (Placebo,
Dofetilide, Quinidine, Ranolazine and Verapamil). Ex-
cept for Dofetilide, these drugs were not studied in the
ECGDMMLD database. The drugs with a more signifi-
cant QT prolonging effect have the highest percentage of

Table 2. Scores obtained on the validation and test sets
after grid-search (QTI threshold = 0.4, λ = 0.01).

F2 Recall Precision
Validation 0.798 0.953 0.484
Test 0.612 0.816 0.306
Test (QTI thresh. = 0.5) 0.639 0.776 0.375

Figure 2. Difference between automatic QT intervals in-
correctly labelled as accurate (QTI threshold = 0.5) and
manual measurements.

ECGs to be reviewed (Dofetilide and Quinidine). Figure 2
shows that more inaccurate QT estimates are missed for the
other 3 drugs (up to 88% for the placebo) but their differ-
ence from the manual intervals remains within acceptable
ranges. The review of these ECGs give better estimates of
the drug-induced QTc changes. For instance, with a QTI
threshold of 0.5, the QTc prolongation (peak QTc change)
computed with this semi-automated method and the man-
ual method differ by 2.98 ± 1.82 ms on average across
the 4 drugs compared to 24.1 ± 21.0 ms with the fully
automated method. This is illustrated on Figure 3, which
shows the time profiles obtained for the Dofetilide and Ra-
nolazine studies with each method.

Table 3. Percentage of inaccurate QT measurements for
the placebo and the 4 drugs in the ECGRDVQ database.

Placebo Dofe. Quin. Rano. Vera. Global ↓
QTI threshold: 0.4 33% 72% 79% 47% 39% 54%

0.5 19% 63% 70% 30% 26% 41%
Ground truth 7% 31% 48% 6% 7% 20%

4. Discussion and conclusion
The QTI, defined for each ECG recording as the mean

probability of inaccuracy of the single-lead automatic QT
measurements, allowed to automatically select ECGs to be
manually reviewed by experts. The proposed approach
is independent of the drug being assessed in the clinical
study.

Different threshold settings could be implemented by ei-
ther using the optimal QTI threshold found by grid-search
or by pre-defining a percentage of ECGs for manual re-
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Figure 3. Placebo-corrected QTc changes estimated with
3 different QT measurement methods: manual, fully au-
tomated and semi-automated (QTI threshold = 0.5). The
horizontal line represents the 10 ms regulatory threshold.

view. The first approach could lead to higher burden
on the cardiologist experts even though they could pass
quickly over mislabeled QT measurements because the U-
Net model provides delineation of the QRS onset and T
offset. On the other hand, a too low pre-defined percent-
age of ECGs to be manually reviewed is time-saving but
might lead to a less accurate TQT study analysis.

With a QTI of 0.5, the drugs with small to no QT pro-
longing effect in the ECGRDVQ database have ∼20-30%
inaccurate QT measurements. Similar percentages were
reported for expert review of manual QT measurements
due to disagreement between the initial ECG readers [9].
For the drugs with a more significant effect, the percent-
age of inaccurate QT intervals is much higher. To lower
this percentage, the performance of the CNN-based QT
estimators should be improved on drug-induced T wave
abnormalities. Indeed, automatic QT measurement is chal-
lenging in TQT studies mostly due to these abnormalities,
which motivated us to build a QTI in the first place [3].
However, this correlation between QT inaccuracy and QT
prolongation might lead to the selection of features heav-
ily related to drug-induced morphology changes. Further
investigation of the CNN-derived ECG characteristics se-
lected by LASSO could help clarify this point.

The QTI is limited by its dependence to the 3 CNN-
based QT estimators, although given the LASSO selected

features it could be built using the U-Net model alone. But
overall, it is a promising tool to conduct accurate and cost-
effective AI-assisted TQT studies.
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